Marathon Medicine:
Exercise Associated Collapse in Endurance Sports

Mark A. Harrast, MD
Medical Director, Seattle Marathon
Medical Director, Sports Medicine Center at Husky Stadium
Director, Sports Medicine Fellowship
Clinical Professor
University of Washington
Overview

- Epidemiology / Demographics of Runners
- Emergency Preparedness
- Exercise Associated Collapse
 - Exercise Associated Hyponatremia
 - Cardiac Arrest
- Heat-related Illness
Exercise Associated Collapse

Extensive Differential:

- EAC
- Heat related illness
- Hypothermia
- Hypoglycemia
- Hyponatremia
- Muscle cramps
- Cardiac arrest
- Other medical / neurologic conditions
Exercise Associated Collapse

Extensive Differential:

- EAC
- Heat related illness
- Hypothermia
- Hypoglycemia
- Hyponatremia
- Muscle cramps
- Cardiac arrest
- Other medical / neurologic conditions
“Benign” Exercise Associated Collapse

AFTER the finish line

“postural hypotension”

Not simply the result of dehydration (Holzhausen 1994, Med Sci Sports Exer)
“Benign” Exercise Associated Collapse

Pathophysiology:

- Leg muscles venous pump
- Venous pooling
- Collapse

As temperature increases, blood flow is shunted from core to skin
Exercise Associated Collapse

Assessment:
- Level of responsiveness
- ABC’s
- When? - during the race vs. after finish
- Blood glucose, Na, Rectal temp, cardiac rhythm, orthostatics

Treatment:
- Treat the underlying cause
- Elevate legs and pelvis
- Oral rehydration
- Not clearing within 15-30 minutes: IVF
Exercise Associated Collapse

Assessment:
- Level of responsiveness
- ABC’s
- When? - during the race vs. after finish
- Blood glucose, Na, Rectal temp, cardiac rhythm, orthostatics

Treatment:
- Treat the underlying cause
- Elevate legs and pelvis
- Oral rehydration
- Not clearing within 15-30 minutes: IVF
Exercise Associated Collapse

Extensive Differential:

- EAC
- Heat related illness
- Hypothermia
- Hypoglycemia
- Hyponatremia
- Muscle cramps
- Cardiac arrest
- Other medical / neurologic conditions
Exercise Associated Hyponatremia

Hypervolemic hyponatremia

First reported in the 1981 Comrades Run (90km) in South Africa

International media attention after a 28yo female runner died after the 2002 Boston Marathon

The Boston Globe: “MARATHON RUNNER’S DEATH LINKED TO EXCESSIVE FLUID INTAKE”

488 runners had a usable blood sample at the finish
- 13% (63) Na < 135
- 0.6% (3) Na < 120

Risk Factors after Multivariate Analysis
- Weight gain
- Race time > 4 hours
- BMI extremes
Pathophysiology:
(similar to SIADH)

Overconsumption of fluids exacerbated by AVP secretion

Sources of AVP during exercise:
- Plasma volume contraction
- Muscle breakdown (rhabdo)
- Nausea/vomiting
- Hypoglycemia
- Stress
- Hyperthermia
Exercise Associated Hyponatremia

Cerebral Edema and Pulmonary Edema

Signs and Symptoms:

Early: Lightheaded, dizzy, nauseated

Middle: Severe and progressive HA, vomiting, puffiness, cramps, confusion, “impending doom”

Late: Ashen, obtundation, seizures
Treatment

Na < 135, fluid overloaded, symptomatic with progressive encephalopathy
- high flow O2
- 100cc of 3% NaCl over 10 min x 2
- (+/- 50-70cc/hour)
- (+/- diuretic)
- Transfer to E.D.
- Start Rx of hyponatremia before head CT

Na < 135, fluid overloaded, minimal symptoms
- allow natural diuresis
- close observation
- ? hospitalization
- fluid restriction

Na < 135, dehydrated
- rehydrate with NS
- if encephalopathic: use 3%NS
- check lytes after each liter
- consider transfer to E.D.
Na < 135, fluid overloaded, minimal symptoms

- allow natural diuresis
- close observation
- ? hospitalization
- fluid restriction

Na < 135, dehydrated

- rehydrate with NS
- if encephalopathic: use 3%NS
- check lytes after each liter
- consider transfer to E.D.

Treatment

Na < 135, fluid overloaded, symptomatic with progressive encephalopathy

- high flow O2
- 100cc of 3% NaCl over 10 min x 2
- (+/- 50-70cc/hour)
- (+/- diuretic)
- Transfer to E.D.
- Start Rx of hyponatremia before head CT
Prevention

Emphasize Individual Differences

Replace what you need (sweat losses)

Drink when you are thirsty
(very safe for slower and at risk runners)

Salty sweaters (or if competition > 6hrs):
use Na / electrolyte replacement
Prevention

Emphasize Individual Differences

Replace what you need (sweat losses)

Drink when you are thirsty
(very safe for slower and at risk runners)

Salty sweaters (or if competition > 6hrs):
use Na / electrolyte replacement

General Guidelines:

Average fluid replacement in a marathon:
400-800 cc / hour (14-27 ounces)
Diagnosis and Prevention of Hyponatremia at an Ultradistance Triathlon

Ironman New Zealand

1997
- 3.8% (25) received care for EAH
- 14 were hospitalized
- 2 were admitted to ICU

1998
- 0.6% (4) received care for EAH
- none were critical
Diagnosis and Prevention of Hyponatremia at an Ultradistance Triathlon

Ironman New Zealand

1997
- 3.8% (25) received care for EAH
- 14 were hospitalized
- 2 were admitted to ICU

1998
- 0.6% (4) received care for EAH
- none were critical

Intervention:
Education on fluid intake
(500-1000cc/hour)
Limited the number of aid stations
- bike: from q 12km to q 20km
- run: from q 1.8 km to q 2.5 km
Exercise Associated Hyponatremia: Summary

Risk Factors
- Finish time > 4 hrs
- Weight gain / high fluid intake
- Smaller runners
- Hot & humid conditions

Treatment
- Oxygen
- 3% NaCl on site
- Transfer to Emergency Facility
Exercise Associated Collapse

Extensive Differential:

- EAC
- Heat related illness
- Hypothermia
- Hypoglycemia
- Hyponatremia
- Muscle cramps
- Cardiac arrest
- Other medical / neurologic conditions
SCD in Marathons

Often quoted risk of SCD in marathons due to CV disease: 1:50,000
SCD in Marathons

Often quoted risk of SCD in marathons due to CV disease: 1:50,000

The rate has improved over the last 10-15 years (potentially due to earlier recognition, better preparation, AED use)

1976-1994 Twin Cities & Marine Corp: 1:55,000
1995-2004 Twin Cities & Marine Corp: 1:220,000
1981-2006 London: 1:130,000

Twin Cities & Marine Corp
1976-2004
~442,000 finishers
9 cardiac arrests
5 died (1:88,000)
4 resuscitated (45%),
(75% in last decade):
 - 3 VFib, 1 asystole
 - all had AED within 5 minutes

7/9 (age 32-58): CAD
19yo female: anomalous coronary artery origin
28yo male: mitochondrial myopathy
6/9 completed one prior marathon

London
1981-2006
~650,000 finishers
11 cardiac arrests
5 died
6 resuscitated (55%),
(50% in last decade)

8/11: CAD
3/11: HCM
1/3rd presented at finish
2/3rd btwn Miles 6-26
Twin Cities & Marine Corp
1976-2004
~442,000 finishers
9 cardiac arrests
5 died (1:88,000)
4 resuscitated (45%),
(75% in last decade):
- 3 VFib, 1 asystole
- all had AED within 5 minutes
7/9 (age 32-58): CAD
19yo female: anomalous coronary artery origin
28yo male: mitochondrial myopathy
6/9 completed one prior marathon

London
1981-2006
~650,000 finishers
11 cardiac arrests
5 died (1:130,000)
6 resuscitated (55%),
(50% in last decade)
8/11: CAD
3/11: HCM
1/3rd presented at finish
2/3rd btwn Miles 6-26
Toronto
2001-2008

2,500 - 4,000 entrants / year

4 cardiac deaths

2001: 54yo multi-marathoner in marathon
2004: 42yo male near end of half-marathon
2005: 37yo male after the half-marathon
2006: 41yo male 800m from finish of marathon
Berlin
September 2008

40,000 entrants

Danny Kassup
25yo Canadian Olympic hopeful

Collapsed at the 5K mark
CPR started immediately
AED within 2 minutes
V Fib arrest from myocarditis
(had a recent URI)
Seattle
November 2007

~ 11,000 entrants

37yo software engineer

1st marathon, multiple half-marathon finishes
Collapsed 30 yards before finish
CPR started immediately
Successfully resuscitated

Cath: 70%mid LAD lesion--> stented
Sept 2009: Virginia Beach RnR HM, 23 yo male
during race, near finish
Oct 2009: San Jose RnR HM, 34yo female, 35yo male
within last mile
Oct 2009: Baltimore Marathon, 23yo male
25th mile, heat stroke (temp 107-108 in ED)
Oct 2009: Detroit HM, 26, 36, 65 yo males
26yo: after finish, others btwn 11-12 miles, all cardiac (65yo CAD)
Dec 2009: Memphis HM, 32yo female
after finish, h/o AFib s/p ablation
Jan 2010: Mississippi Blues Marathon relay, 40yo male
died in the initial mile of the anchor leg
Mar 2010: Dallas RnR HM, 32yo male
after finish, myocarditis
May 2010: Orange County HM, 46yo male
100yds before finish, heat stroke, h/o sz disorder,
June 2010: Duluth Grandma’s HM, 64yo male
after finish, CAD s/p MI
Sept 2010: Virginia Beach RnR HM, 27yo male
at finish
Sept 2010: Nashville Women’s HM, 54yo female
after finish, CAD s/p MI
Sept 2009: Virginia Beach RnR HM, 23 yo male
during race, near finish
Oct 2009: San Jose RnR HM, 34yo female, 35yo male
within last mile
Oct 2009: Baltimore Marathon, 23yo male
25th mile, heat stroke (temp 107-108 in ED)
Oct 2009: Detroit HM, 26, 36, 65 yo males
26yo: after finish, others btwn 11-12 miles, all cardiac (65yo CAD)
Dec 2009: Memphis HM, 32yo female
after finish, h/o AFib s/p ablation
Jan 2010: Mississippi Blues Marathon relay, 40yo male
died in the initial mile of the anchor leg
Mar 2010: Dallas RnR HM, 32yo male
after finish, myocarditis
May 2010: Orange County HM, 46yo male
100yds before finish, heat stroke, h/o sz disorder,
June 2010: Duluth Grandma’s HM, 64yo male
after finish, CAD s/p MI
Sept 2010: Virginia Beach RnR HM, 27yo male
at finish
Sept 2010: Nashville Women’s HM, 54yo female
after finish, CAD s/p MI
14 Race Related Deaths in 2009-10

Marathon: 2
Half Marathon: 12

cardiac: 7
heat stroke: 2
unknown: 5

males: 11
females: 3

7 < 35yo
7 > 35yo
(3 > 50yo)
Risk of SCD in Marathon Running vs. Dying in an MVA

(that might otherwise have taken place if the roads had not been closed)

DA Redelmeier, 2009 BMJ
Risk of SCD in Marathon Running vs. Dying in an MVA

(that might otherwise have taken place if the roads had not been closed)

DA Redelmeier, 2009 BMJ

Retrospectively studied 26 US marathons 1975-2004:
 26 SCD
Due to road closures, 46 MV fatalities were prevented
 (35% risk reduction)
 1.8 crash deaths saved for each case of SCD

From a societal perspective, organized marathons decrease the death rate
Exercise Associated Collapse

Extensive Differential:

- EAC
- Heat related illness
- Hypothermia
- Hypoglycemia
- Hyponatremia
- Muscle cramps
- Cardiac arrest
- Other medical / neurologic conditions
Heat Exhaustion

Inability to continue to exercise in the heat
Represents a failure of the CV responses to workload, high env. temps, and dehydration
No known chronic or harmful effects
Heat Stroke

Hyperthermia: core temp > 39C/102.2F with CNS dysfunction
Rectal temperature
Medical Emergency!
Causes multi-organ system failure.
Treatment: Immediate cooling!
Whole Body Cooling

“Golden half-hour”
- cool within 30 minutes
- <40C/104F
- d/c water immersion when at 101-102F

Fastest: cold water immersion

Whatever method is utilized, it should be:
- simple and safe
- provide adequate cooling
- not restrict other forms of rx (CPR, defibrillation, IV cannulation)

Methods
- Ice bath/cold water immersion
- Burrito method with sheets and ice
- Ice to head, neck, axilla, and groin

Whole Body Cooling

“Golden half-hour”
- cool within 30 minutes
- <40C/104F
- d/c water immersion when at 101-102F

Fastest: cold water immersion

Whatever method is utilized, it should be:
- simple and safe
- provide adequate cooling
- not restrict other forms of rx (CPR, defibrillation, IV cannulation)

Methods
- Ice bath/cold water immersion
- Burrito method with sheets and ice
- Ice to head, neck, axilla, and groin

Whole Body Cooling

“Golden half-hour”
- cool within 30 minutes
- <40C/104F
- d/c water immersion when at 101-102F
- Fastest: cold water immersion
- Whatever method is utilized, it should be:
 - simple and safe
 - provide adequate cooling
 - not restrict other forms of rx (CPR, defibrillation, IV cannulation)

Methods
- Ice bath/cold water immersion
- Burrito method with sheets and ice
- Ice to head, neck, axilla, and groin

Etiology of Heat Stroke

- High ambient temperature
 - but does occur in cool environments

- Metabolic heat production from exercise exceeds heat loss / inadequate heat losing mechanisms
 - but does occur in slower runners whose metabolic rate is lower and thus heat production is lower

- Excessive endothermy (endogenous heat production)
 - ? form of malignant hyperthermia
 - excessive sympathetic activation in the presence of a metabolic myopathy

Etiology of Heat Stroke

- High ambient temperature
 - but does occur in cool environments

- Metabolic heat production from exercise exceeds heat loss / inadequate heat losing mechanisms
 - but does occur in slower runners whose metabolic rate is lower and thus heat production is lower

- Excessive endothermy (endogenous heat production)
 - ? form of malignant hyperthermia
 - excessive sympathetic activation in the presence of a metabolic myopathy

Etiology of Heat Stroke

- High ambient temperature
 - but does occur in cool environments
- Metabolic heat production from exercise exceeds heat loss / inadequate heat losing mechanisms
 - but does occur in slower runners whose metabolic rate is lower and thus heat production is lower
- Excessive endothermy (endogenous heat production)
 - type of malignant hyperthermia
 - excessive sympathetic activation in the presence of a metabolic myopathy

Etiology of Heat Stroke

- High ambient temperature
 - but does occur in cool environments

- Excessive endothermy (endogenous heat production)
 - ? form of malignant hyperthermia
 - excessive sympathetic activation in the presence of a metabolic myopathy

- Metabolic heat production from exercise exceeds heat loss / inadequate heat losing mechanisms
 - but does occur in slower runners whose metabolic rate is lower and thus heat production is lower

Pathophysiology of Heat Stroke

- **Systemic Inflammatory Response System (SIRS)**
 - a “cytokine storm,” similar to sepsis:
 - organ hypoperfusion --> gut ischemia --> endotoxin release --> pyrogenic cytokines --> worsening hyperthermia
 - primed by prior viral exposure (URI?)

- **Multi-organ system failure**
 - CNS involvement: cerebellum and BBB breakdown
 - Associated with rhabdomyolysis, renal failure, liver damage, hyperkalemia, hypercalcemia, and hypoglycemia

Bouchama: NEJM 2002
Sonna: Prog Brain Res 2007
O’Connor: Curr Sports Med Rep 2010
Summary

1. Prevention of benign EAC:
 - keep the runner walking after the finish
Summary

1. Prevention of benign EAC:
 - keep the runner walking after the finish

2. If a significant collapse occurs:
 - check Na, glucose, rectal temp, pulse/cardiac rhythm
Summary

1. Prevention of benign EAC:
 - keep the runner walking after the finish

2. If a significant collapse occurs:
 - check Na, glucose, rectal temp, pulse/cardiac rhythm

3. Exercise Associated Hyponatremia:
 - prevention: limit fluid intake on the course
 - Rx: early Dx, 3%NaCl, quick tx to ED
Summary

1. Prevention of benign EAC:
 - keep the runner walking after the finish

2. If a significant collapse occurs:
 - check Na, glucose, rectal temp, pulse/cardiac rhythm

3. Exercise Associated Hyponatremia:
 - prevention: limit fluid intake on the course
 - Rx: early Dx, 3%NaCl, quick tx to ED

4. Cardiac Arrest:
 - AED access within 3-5 minutes
Summary

1. Prevention of benign EAC:
 - keep the runner walking after the finish
2. If a significant collapse occurs:
 - check Na, glucose, rectal temp, pulse/cardiac rhythm
3. Exercise Associated Hyponatremia:
 - prevention: limit fluid intake on the course
 - Rx: early Dx, 3%NaCl, quick tx to ED
4. Cardiac Arrest:
 - AED access within 3-5 minutes
5. Hyperthermia:
 - check rectal temperature
 - Rx: immediate whole body cooling